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QUANTUM MECHANICAL STUDY OF MOLECULES

Eigenvalues and Eigenvectors of Real Symmetric Matrices

by G. R. Verma) C. D. Ia Budde and R. C. Sabni

SUMMARY

In this report, three general classes of methods for caleculating the
eigenvalues and eigenvectors of real symmetric matrices arising in quantum
mechanical calculations are described: the Sturm sequence methods, the ortho-
gonal reduction methods, and the step by step methods. The advantages and
limitations of each method are pointed out. The report also includes the dis-
cussion of various methods of reducing real symmetric matrices to more compact
convenient forms. Methods of reduction to tridiagonal form, and deflation of

matrices to smaller order are described.

INTRODUCTION

This is the first of a series of reports

n the present techniques used to
perform matrix calculations on high speed electronic digital computers. In this
report the authors confine themselves to a discussion of techniques for calcu-
lating the eigenvalue and eigenvectors of real symmetric matrices arising in
problems of molecular gquantum mechanics. Subsequent reports will deal with

other numerical techniques used in solving problems arising in molecular quantum

mechanics.

1. Statement of the Problem
For a given square nxn matrix A = (Qﬁj)’ find numbers (eigenvalues) €

and non zero column vectors (eigenvectors) X such that
AR = & (1)

where A is real (all aij real) and symmetric (o:ij = aji for all i, j). We know

* Presently at the University of Rhode Island, Kingston, Rhode Island



by the theory of linear equations there exist ﬁon-zero X's satisfying (1)
only if the determinant of A' (written DET (A')) is zero where A' has elements
atij =0, 1 # 3 and oty =€ -0, DET (A'), as a function of € is an
nth degree polynomial in e, and is referred to as the characteristic polynomial
of A. We denote DET (A') by £(e).

If we let I represent the identity matrix, A_l, AT represent the inverse

and transpose of a matrix A respectively, then we may state two eigenvalue

problems closely related to the one given by equation (1) namely

AX = eKX (2)
and

AR = &X (3)

where A and B are symmetric matrices and B is, in addition, positive definite
(211 eigenvalues of B are positive).
If B is symmetric and positive definite, then there is an invertible

T

matrix L (L-l exists) such that 'L = B. By the theory of linear equations the

€'s of equation (2) must satisfy

0 DET (A - €B) ()

or

pET ((z0)™Y) DET (A - eB) DET (1Y)

o
it

oET (1)t (A - eB) LY (5)

1

DET ((LT)‘l AL™" - eI)

DET (C - €I)
-1 ,.-1 R R . :
where C = (L") AL " and is also symmetric. Hence the solution of (2) is

equivalent to the solution of



CY = €Y (6)

where the € are the eigenvalues of C and the Y are the corresponding eigenvectors.

The vectors Y are reldted to the vectors X of equation (2) as follows:

x = h. (7)
This can be verified by substitution in equation (2) and multiplication on the
left by (LT) -1
The € of equation (3) must satisfy
DET (AB - €I) = O (8)

or
DET (AB - eI) DET (B™Y) (9)

o
]

DET (A - eB'l).
This is essentially equation (4) and the eigenvalue problem can be put in the
form

CY = ¥ (10)

where C = LALY and X = IY in equation (3).

2. Description and Classification of the Methods

There are three general classes of numerical procedures for solving the
basic problem stated in equation (1) of section 1.

Thé first class of methods, referred to as the Sturm sequence methods,
determines the numbers € by means of a Sturm sequence of polynomials associated
with the matrix A. Once the € have been determined, the associated vectors X
can be determined in several straight forward methods which will be described
later.

The second class of methods, referred to as the orthogonal reduction methods,

determines the numbers € and vectors X simultaneously. A sequence of orthogonal



matrices U(k) is generated, usually as a product of elementary orthogonal
matrices, such that the limit as k —3 « of U(k)T AU(k) is a diagonal matrix
(zeros everywhere except possibly on the main diagonal). The numbers on the
diagonal will be fhe eigenvalues € of A and the corresponding colummns of
U= limit of U(k) as X ——> » will be the eigenvectors X.

The third class of methods, referred to as the step by step methods, deter-
mines one eigenvalue € and a corresponding eigenvector X, one pair, € and X at a
time. Once € and X have been determined, it is easy to construct an orthogonal

matrix V such that

VA = e (11)

where A, is & symmetric (n-1) X (n-1) matrix. Thus, the problem has been

essentially reduced by reducing the order of the matrix by one.

2.1 Two Special Matrices
We will now define two special orthogonal matrices which will be used in
a number of algorithms described in this report.

let Jij (i < j) be an nxn matrix of the following form

col i col j
1
1 (12)
row i c s
1
J. . =
1J
. 1
row J s -c
1

—



) 14
Iy j is the same as the identity matrix except for the iP® row-i colum, ith

row ‘jtB colum, jth row itR colum, jtR row jTB column where the entries are c,

s, s, and -c¢ respectively. If

e® v 82 = 1 (13)
then J 13 is both orthogonal and symmetric. We shall call the matrices J 1j
Jacobi plane rotations or Jacobi transformations - (metrices).

Iet
H = I-2WW (11)
i 171

be a matrix with lel_‘ a row vector having the property that the first i components

T
of Wi are zeros, namely

Wf = (0, 0, ..., O, Wiglr oo wn)° . (15)
It

W, = 1 (16)

11

then Hi is both orthogonal and symmetric. We shall call the matrices Hi
Householder Transformations Matrices. It is easily seen that Hn-2 is equal to

Jn—l,n for some suitably chosen ¢, s.

2.2 Preliminary Reductions

The solution of the general problem of finding an orthogonal matrix U for
a given symmetric matrix A such that U:[I AU = D where D is a diagonal matrix is
often facilitated by making some preliminary reductions by orthogonal similarity
transformations on A. We cé.n, for instance, reduce a symmetric matrix to tri-
diagonal (Jacobi) form (zeros everywhere except on the three main diagonals)
by several non-iterative methods, three of which will be deseribed here. If an
eigenvalue and a corresponding eigenvec‘bér of the mxn matrix is known, we may

use this information +to transform the matrix into a direct sum of an xn



matrix and an (n-1) x (n-1) matrix which essentially reduces the order of the
matrix to be solved. This process is referred to as deflation. We will describe
here the reduction to tridiagonal form by the methods of Givens, Householder, and

Ianczos, and one of the deflation methods.

We will first describe Givens' method. Suppose A is a symmetric matrix of

O

the form :
e,
Jomme et Tl
& i BT
! "n-i
e mm erm mm b e mmm e e —— - ———————-
] ]
i
]
- 1
A B . 1 A (1)
n-i ' n-i
t
]
[ ]
1
]
1
1

where A, and A ;areixiand (n~i) x (n-i) matrices respectively, A, is in
tridiagonal form, and Bn-i is an (n-i) dimensional column vector. We wish to

show how to obtain an orthogonal matrix U such that U:AU = A' where

A (18)

and A, A! . are i x i and (n-i) x (n-i) matrices where A} is in tridiagonal
form and Bﬁ i is an (n-i) dimensional vector having all components except

possibly the first equal to zero. Then A' will be of the form



. 14l LT
= n-i-1
________ S e (19)
) 1] 1 1
:Bn'-l-} n-i-1
] 1
O '
[ ] ]
1 s
1 )
] )
] ]
] )
where A! At . . are (i+1) x (i+l) and (n-i-1) x (n-i-1) matrices respectively,

i+l’ n-i-1

t is i 134 '
Ai+1 is in tridiagonal form and Bn-i-l

consider a sequence of (n~-i-1) Jacobi transformations
(k) (n-i-1)

is an (n-i-1) dimensional vector. We

nln n2nl’

nk-1,n-k> Ti+1,i42 0
a0~ 4
1) (0) ;1) _ L,
-l, A n-l n A
500 (k1) (k) _
n-k-1, n-k = n-k-1, n-k
A(n-:l.-l) (20)
(o)r T
Bpci = Baar < (al’ 22t ozn-l)
k)T k k k
W () 0 )
(n-i-1)T T
N = B, (ai, by eees OF l) .
Then we define
7  (n-i-1) (2) (1)
U = Ji+l i+v2 7777 n-2 n-1 n-l n ° (21)
The transformations J (x) . will not destroy the tridiagonal form of A.,
n-k-1, n-k i

namely A:;_ = Ai' The blocks of zeros in the upper right and lower left hand

corners of A will be preserved by these transformations. We need only consider

B € N



the effects of these transformations on the vectors B( ). Iet the ¢, s assoclated

(k) (k) (x) .
with the Jn k-1, n-k be denoted by ¢V, s « If we define
2
(&) _ f(s-1) k-l) )2 (k-1), 27/
8 - n-1-k+l / L n-i k+l + (Qn-i-k) _l (22)
JB) (D) (1) g2 (ke1)y2 ~/2
- n-1 -k l_ n-:L-k+l . n-i-k _J .
(k)y2 (k)y2 _ (k) -
then (sM/)° + (e¥V)” = 1 and. O 5 ges1 0.
(k-1) _ (k1)  _ - (k-1) _
It O ike2 = Opike3 = coccc = 0 s = 0, then
(lf:)L-k+2 = r(lkj).-k+3 T eeeee = a(lfg_ = 0 also. Thus it can be easily seen
that B! will bhave all components equal to zero, except possibly the first.

n-1
The Householder reduction to tridiagonal form is as follows. Suppose A

has the form of equation (17) and let

A" = H AH. : (23)

We wish to show that for a suitably chosen Wi , A' will be in the form of

equation (19). Iet WiT = (0, ses, O, W10 et wn) be defined as follows

nlo e e
v = 2 @il (T AT
k=1
(24)

=
1

n-i
. sen(o ) al-i/ [Z O/]i)l/2 wi+l] , i+2 < 2 <n
k=1

It is a matter of straight forward algebra to verify that Wf Wi = 1 and that the
vector BI’1 i has all components equal to zero except possibly the first. It is

also easily seen that AJ.'_ = Ai and that the upper right and lower left hand



blocks of zeros in equation (17) are preserved.

The Ianczos method may be described as follows. Iet X, be any arbitrary

1

non-zero vector. We define the following sequence of vectors Xi

Xp = By - Xy
X3 = 8Ky - oy - BpXy (25)
Xg = By -%a % -Bie¥e
where
7 T
oy = (K &K )7 3% )
(26)
T P
Bi_e = (Xi—l AXi—z)/(Xi—E Xi—2) .

It can easily be seen that the vectors Xi are orthogonal to each other. We

T

distinguish two cases: (1) Xj Xj #01<j<i-1 and xf:xi = 0 (or X, = 0)

T
J
Case (1) X? Xj A0 1<3<i-1; X; = 0 for some i. Then we have

for some i, 2 < i <nor (2) X Xj £0far 1 <j <n.

a7 Ga¥g P (27)
and the space spanned by the orthogonal vectors Xl’ coey Xi-l is a reducing
subspace for A. We define an nxn matrix V

vV = (xl, Xpy X35 eees Xy g5 Tis eeey Yn) (28)
where the Yj s are column vectors so chosen that X§ Yk =0 amd Y? Yk = Bjk'

Vv = D (29)
where D is a diagonal matrix with positive elements on the diagonal. Hence D

1/2 and D-l'/2 exists. Then there is a matrix A'

has a real square root D




PO e - - (30)

where Z, . and Z . . are (i-1) x (i-1) and (n-i+l) x (n-i+l) matrices

1 i+l

respectively such that

AV = VA, (31)
Then we may write

p V2 T a2 L p /2T gl pl/2 | pl/2 gy V/2) (3p)

- -1/2
Now Dl/ 2 A D 12 is of the form of equation (30) and VD V/ is an orthogonal

matrix. Hence we can reduce the problem of calculating eigenvalues and eigen-
vectors of an nxn matrix to one of calculating eigenvalues and eigenvectors of
an (i-1) x (i-1) matrix and an (n-i+l) x (n-i+l) matrix.

Case (2) xg.jxj £0 1<j<n.

If we define X, by equations (25) and (26) then X .q = O because the

1 1
Xj 1 <€ J < n are non-zero vectors spanning the n dimensional space. We

define a matrix
Vo= (X, Xgy eees X))o (33)
Now VTV = D where D is a diagonal matrix with positive ‘elements on the diagonal.

1/2 1/2

Hence D has a real square root D and D-l/2 exists, and VD~ is an ortho-

gonal matrix. Hence

AV = VA ' (34)

10



where

ar - ' | (35)

Therefore

p /2 T paypl/2 o p MR T gy p W2 L V2 p pl/2 | (36)

1/2 is an

The right hand side of equation (36) is in tridiagonal form, and VD~
orthogonal matrix which transforms A to tridiagonal form.
The process of deflating a matrix is one essentially of isolating and

eliminating from consideration one eigenvalue and a corresponding eigenvector

from an nxn symmetric matrix A to obtain a matrix A' of the form

A - S (37)

where € is an eigenvalue of A and A . is an (n-1) x (n-1) matrix. Iet e, X
be an eigenvalue and corresponding eigenvector, such that XTX =1 and let V
be an nx(n-1) rectangular matrix such that XV = 0. Such matrices V can always

be constructed. Consider the matrix S = (XEV). Then STS = I and

11



X '
At = sTas = —— A é{tV)
VT ¢
XT .
S G i )
T .
v
IIII ‘
e + XTAV € 0
B A Sedo ), e
VX | viav O+ A

which gives us the required reduction.

2.3 Sturm Sequence Method
This method is based upon the well known theorem that if A is a symmetric
matrix and A.i is the i x i matrix formed from the upper left ith order minor

of A, then the eigenvalues of Ai are distinct from those of Ai+ and properly

1

separate those of A, If fi(e) is the characteristic polynomial of A, namely

1°
£,(e) = DET (eI - A;), £ (e) is defined to be one, and £ (€) # 0, then the
number of eigenvalues of A greater than € is the number of sign changes in the

sequence fo(e), fl(e), £,(€)5 oo, fn(e).

If A is in tridiagonal form, namely

A = By O B (39)

the fi(e) may be given by the following formulas

12



fo(e) = 1
fl(e) = e-q
£,(e) = (e - ) £, 4(e) -po ;£ ole) i>2 (%0)

If some By = O the matrix decomposes into a direct sum of matrices, each
of which may be considered separately. This must happen if A has multiple eigen-
values? Therefore, we may assume without loss of generality that all Bi % 0 and
hence all eigenvalues are distinct.

The formulas in equation (4) may be used to determine the number of sign
changes in the sequence fo(e), fl(e), ceey fn(e) and thereby determine intervals
of any desired size in which each of the distinct eigenvalues may be found. It
may be noted that the vanishing of an intermediate fj(e) (1 £ 3 <n) does not
affect the number of sign changes in the above sequence because if fj(e) = 0,

then by equations (40) fj-l(e) #0, f£...(e) #0and fj-l(e)’ fj+1(e) must

J+1
have opposite signs.

Once the eigenvalues € have been found the corresponding eigenvectors XT

= (xl, Xpy eees xn) may be found by one of several straight forward methods.

The simplest is that of back substitution. Take X, = 1. Then

*na1 < (e - Qh)/ Pu-1
x o = ((e-a )= ;-8,,)/ 8,0 (41)
5o = e-agxy -8y xy0)/ By -

However, this method leads to numerical instabilities should any of the = be
small in absolute value.
Another method, referred to as the method of orthogonal factorization, is

© the following. Consider a matrix B

13



w n O

B =A-e1I =P uw B (42)

On =

B is singular so DET (B) =.0. Consider the following sequence of matrices B

(k)

l1<k<n -1, defined as fallows:

k) k)

- Jl({,k+l p-1) - 5(0) _ g, (43)

s

; (1) (1) (1)
If we define the ¢ 5 B of J12 as follows

1/2
o(®) u1/(115 + Bf)

1/2

S W/ R (1)

S

then B(l) takes the form

(1) . (15)

where

1k



o 0. 1/2

d; = (u + py)
R
£ = By s (1) (o)
N C I
By = -Bp O
We define by induction
SRR (v7)
s e 6D
Then the matrix BUY) appears thus:
a e £
o 4 e £,
S Y (48)
° &1 i1

Bk+l Yey2 Bk+2

where

15



1/2

G = (g + By
R R T
Bog = B o -y e W
Pevr = 7 Bra )
& = %y .
Now let U = 81 ;(n-2) e 33 51 men uB 1s upper triangular

2,3 “1,2°

with only the first three upper diagonals having élemen‘ts different from zero.

n-l,n " n-2,n-1

If DET (B) = 0 then DET (UB) = 0 and hence 4, = O for some k. If 4 = O for

k # n then by equations (49) By = 0, contrary to assumption. So d =0. If BT

is the vector (0, O, ..., O, 1) then E'UB=0or BUUE =0 or (A - €1) UE < o.
Hence AUT E = <—:UT BE and UT'E is an eigenvector of A corresponding to the eigen-
value €.

A third method, referred to as the method of inverse iterations, is the
following. ILet ej and U, be the corresponding eigenvalues and eigenvectors of
A and let Ei be the calculated approximation to ei. Iet X(o) be an arbitrary

vector which we expand as follows:
n
(o) _ T
X = ) % Y (50)
k=1
We assume that Ci # 0 and X(O)A_Ii X(O) = 1. Consider a sequence of vectors X(j)
defined by

PCD TS R LG (51)

If we set j = 1 in equation (51) we see that

16



n

. n
1 - ¢ U ¢. U, - & U
X( )= kl: = 11_ + 2_, ——kli (52)
o1 (&8;) (e;-€;) ko1 (5m€;) '
ki
satisfies equation (51). More generally
. e U, o e, U
x() . 11, y k. | (53)
(e€;) k1 (5€;) '

k;éi.

If lei - € | is small compared to | & - €& | Xk # i, (which would be expected)
then the X(J), if normalized, would converge to Ui ag j — o .

2.4 Orthogonal Reduction Methods

This is a class of methods which constructs an orghogonal matrix U for a
given real symmetric nxn matrix A such that

U AU =

D (a diagonal matrix)

(54)
by obtaining U as a limit
o u® _ g (55)
k—> =
where U(k) is usuvally a product of elementary orthogonal matrices Uj
o8

Uy Uy Ug--- Uy o (56)
The columns of U will be the column eigenvectors with the corresponding diagonal

element of D being the corresponding eigenvalue.

2.4.1 Jacobi Methods

In these methods the elementary orthogonal matrices are the Jacobi matrices
5... et alo) _ A,
ij

17



A(8)
(1) )

c

o (k)
oLl A .

o8)

- g

The elements of A}

iklk =

(k)
Tl

o
kIx

(k)
%44

(k)
ajkq_

(k)
apik

o)

o)
Pq

+

- o) (o) )

A(k'l)
Tk

(k)

() (o) (-1} | () (k1)
lklk : 1

;e m o s (k-
° are related to those of A —

e

be the numbers associated with the Jg? , and aI()lqi) be the elements

Kk
1)

as follows:

i3
K*kK

) (o(0) D) | () (e-1),

kJx

o (k) (s () o {k-2)

Jxdk

- o) g1y
k°k

- (B (k-1)y

Tdy Iedx
s(k) (c(k) agk.'l) + s(k) a.(kfl))
'k xdx
c(k) (c(k) angl) + s(k) a(.ktl)) (58)
Txdk JrIk
k) (k-1) x k-1)
o O‘gkq v s agkq L
’ q-7£ ik’ Jk
(k) (k-1) (k) (k-1)
S O‘ikq - a.jkq /
' N
c(®) (k-1) | (k) (k1) (
piy DIy
J6) (k1) _ (k) )
piy Py
dI()g'l) P, a £ Iy dy

18



From equation (58) we can easily verify

(k)

(k) (k)
(akk e (ak‘]) v (aJka)
_ (a(k-l))2 .2 (a(k 1))2 . (a(k 1))2
Tx'k Ty dyedye
59)
(a(k) 2 (oz(.k))2 = ((k l))2 + ((k l))2 qa#i ;
kq Iy % 2 .qu Kk’ “k
(x) |2 k) 2 (k-1),2 k-1),2 . .
@ oD = @ (g s g
If we set
(x-1) (k-1) (k-1) _ (k 1)\2 (x-1)\2
oK) TN W j:\/ Ny 9y " <Ofikjk
RO 2 F D)
i3
kYk (a:gk:j-l)?é 0)
kY%
then it is easily seen that a§k2 = 0.
xIx
Now we define
n
k) _ ) (k)42
d = pél (app )
(61)
n n
s
p=1 q=1 '
afp
n n
SR
p=1 g=1
then £(8) - (k1) 220 e, 2o a® L W(®) g 8506 4

chosen by equation (60), then

1s

(60)



kJk
(62)
N B ¢ N el
lk,]k .
by the fact that agkg = 0 and equations (59). If i,s J) 8re chosen so that
k
k-1)
(k-1),2 u(
(aikjk Y > SET) (63)
then
k
(k) 2 (k-1) 2 (o)
u s [l - nln-li] u s [l - nin-li] ut . (64)
Hence
1im u(k) = 0
k—> «
(65)
lim A(k) = diagonal matrix
k—> o
vm ¢ - am @@ &y
k—> o k> 29 Todo *kdx

an orthogonal matrix of eigenvectors of A.

There is a considerable amount of freedom in selecting ik’ jk at each step.
We may, for example, choose ik’ jk so that Qékgl) has the largest absolute value
k'k
of all off~diagonal elements. We may also choose ik’ jk sequentially as follows:

-k-l; jk = jk-l + 1 for ik-l < n-1 and jk-l < n,

L=1 + 1; jk =1+ 1 for ik-l < n-1 and Iy = 0 (66)

e
1

=1, jk = 2 for ik-l = n-1 and jk-l = n;

or

20



,j_k = 'jk-l’ =4, 4t 1l for ‘jk-l < n and lk-l < 'jk-l -1

Jeg vl =1 for §, , <n and Ty = 9 q - 1 (67)

i, = 1, jk=2 forjk-1=nandlk-l=jk-l_l'

We obtain convergence for selection schemes equations (66) and (67) provided,
if we set c(k) = cos a(k), s(k)= sin a(k), the angles a(k) all lie in some

closed interval contained in the open interval (- 1I/2, 1/2).

2.4.2 Ia Budde-Kaiser Methods
In these methods Householder matrices will be used as elementary orthogonal

matrices to construct the matrix U which diagonalizes A,

In the Ia Budde methods the iteration consists of two parts: one

H](.k) 2(k-1) Hgk) - ¥ (68)
and, two
OO NERON (69)
It is convenient to partition the matrices A(k) and B(k) as follows,
k) | Sx)T
A _-_?i%_-l-_?f_i-__
1
k) k)
st : A (70)
g _ (0‘%) g(6)Ty
<[ o | aor
A(k) TeTTTTTORTTT YT
’ (k) | ()
T : A2

21



1
ply) 1 x()

s _ Rt ety
x (k) : ng)
()T _ ( B;(ng) 5 7(%)
(k) j (k)T
Pop” i ¥
Bg-k) = ---"--‘"———E————-————_-_
2 5 .

Here A&k), B&k) are (n-1) x (n-1) matrices, Aé§)3gk) are (n-2) x (n-2)
matrices, S(k), x(¥) are (n-1) dimensional vectors, and R(k), T(k), Z(k), y(k)
are (n-2) dimensional vectors.
If F is a matrix or vector, we define [[F|| to be the square root of the sum

of the squares of all of the elements of F. We now define the matrices H§k),

J(k)' used in the iteration. Iet Hék) = I - 2W§k) ng)T where
12 i i
Wik)T = (o0, Wék), vee, wék)). If we set

- ] L1/
SR e e VAT
(71)

(k-1

W) o sem ({5 oY @l s 3<s<m

22



(k) (x-1)
P11 = %
I [ [ L S R e T
2B _
(72)
Bég) _ v(k-l)T Aék-l) V(k-l)
llY(k)IIE _ V(k-l)T Agk-l) (1 - V(k-l) V(k-l)T) Agk—l) V(k-l)
e - jralety
where V(k) = S(k)/l IS(k)H The effect of Jg_lé) on B(k) is as follows. ILet
c(k), s(k) be the guantities associated with ngg) Then we have
ag) = B](_li) + Aozg_) = a§1;__l) + Aa](_li) (73)
where ( )
k
soff) o (0N g - ofi w2 Sy el (74)
and
o) = 0, apl) (75)
where ( ) 5 (x)
' k
seff) - ()7 (’2 Tﬂ) e+ Sy (e -Béﬁ)a-
Finally
R ] = s )y
TT)
e = ety ey (
Aék) _ ng)
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It can easily be shown from equations (72 to T77) that if d(k) is any
sequence of numbers satisfying the following: (1) d(k) >0, (2) |d(k)| are

bounded away from zero, (3) Id(k)l are bounded away from o 5, and

(0™ - v ol
B 2 pE) (8)
- then
o BB - 1w (5@ <o
k3 k—> o (79) .
€ : 0
1w al®) o[- bomm e
k— o 0 l: Al

where A, is an (n-1) x (n-1) matrix and €; is an eigenvalue of A. Equation
(79) is true if any one, two, or all of the conditions (1) - (3) are replaced
by the corresponding conditions (1)* - (3)' : (1) d(k) <0, (2)¢ Ia(k)]
approaches zero no faster than |B£g)|2, (3)! Id(k)|'l approaches zero no

faster than ][3:?;) [2.

It can also be shown by eguations (72 to 77) that if

0 < IC(k) I < I a](-l]{_-l) - ng)l
= &S 2 ﬁ(k)
12
(80)
e oy - o8
sgn = sgn
;TET 2 Big)
then
e JRE] -0, 1m 2™ < o
k—> = k—3> o
(81)
E, ! 0
T e
E—> o 0 i A,
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where E, is & 2 x 2 matrix and A, is an (n-2) x (n-2) matrix.

Two ‘special cases of interest will be noted here. One is the case where

we define

2
k k-1 k) (k)
at) J/ (a( ) Bée + b (pyn") . (82)
These choices of d(k cause a( ) = 0 and maximize |A‘oé§)L The other case
is the one in which we set c(k)/s(k) = 0., In this case the Jacobi transforma-

tion Jgg) B(k) Jig) reduces to a simple row and column permutation which is
exact and requires no ccmputation.

The Kaiser iteration may be defined as follows

o] o]
where
LB _ 1oy (®) 0T
o o]
k)T k k k
wT 00 (e )y (84)
Before proceeding with the kth step we make sure that all elements a(k -1)

2 < j<n are non-negative. This can easily be done by appropriate row and

column multiplications. We define

N (T el e

N (85)
WEL (T Y Dy oy
j=2 p=2
and we take
MOREENE -
W 0w e
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Then we have

If we set

then

and

If we choose

2 v @) )2 - g
(87)
o) = oD -2 (o®)?2
- aTT ) (B g (942 (k1)
¢4 (n1) () g(B)2 | (k1)
cos a(k) = 1-2 (c(k))2
(88)
sin a® o 2 pmT () LK)
(cos a(k))2 + (sin a(k))2 = 1 (89)
oéi) = (cos a(k))2 agﬁ'l) -2 cos a(¥) sin g(k) £ (k1)
+ (sin a(k))2 (te-1)
(90)
= 12 @5 GDy L aos 2 () (of-t) - (s-1)
- sin 2a(k) t(k_l)
tan 2a(¥) -Et(k'l)/(al(_li'l) - ulEd), (91)

then a(k) assumes its maximum value as a function of a(k) and is

11
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(k) = 1/2 (a(k-l) N u(k_l))

BBl 11
) (92)
. e/
12 [aj(i"l) R A e
This shows that agf) > aﬂl) with equality holding only if t(k'l) = 0. If the

a(k) are chosen by equation (91) then equations (79) hold true and convergence

‘is obtained.

2.4,3 The L-R Method
In this section we will assume that the nxn symmetric matrix A is positive

definite and is in tridiagonal form, i.e.

A = By % Bp (93)

We may also assume, without loss of generality as before +that all Bi %-O.
The basic iteration is as follows.

We factor A(k_l) into

ak-1) o Ge-1)T 1 (&-1) | (9k)
where -
S(k-1) (k1) O
1 1
(x-1) (x-1) (95)
a
L(k_l) 2 €2

O
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L(k-l) is upper triangular with non-zero elements only on the main and first

upper diagonals. We now form

S8 (k1) (e (56)
AE) 5o simitar to AL 4 e,
A(k) = {7 (k-"l) T\ -1 A (k"l) T (k'l)T 96)

(
UL ) a L . (¢

Also, A(k) is in tridiagonal form.

The relations between the-elements of A(k'l), L(k_l), and A(k) are as
follows
d:'ik—l) = 4 alk-l
e:(Lk-l) _ (k l)/d(k -1)
dgk'l) = (Ot(k -1) (eglfil))e)l/e 253 <n
egk-l) _ ng-l)/dgk-l) 2<ij<n-1
a](-k) _ (d](_k-l))e N (eik-l))E
(97)
_ oék-l) . (k 1)) /a(k -1)
k k-1 k-1
Bg ) - dg ) e](‘ )
(k-1)
- A D) (e, D)
\/—m-)- @2 / al
olE) _ (d(k 1))2 . (egk-l))e
- k1) (k l)/ dL(k l) 2 (B(k l)/d(k l))2 2<j<nl

J
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_Oék) _ (dék—l))Z _ aék-l) (k 1)/d(k-l) 2

k) k-1) k-1)
Bg §+l eg

_ (Bjk l)/d(k Y (a (k-l)__ ( gk-l)/d(k A2 5y cp ;

j+l

It can be shown from equations (97) that all B(k) ——-> 0 as k —>» o and

hence
1lim A(k) = a diagonal matrix
k—> o
lim U(k) = 1im L(l)III L(E)T . L(k)T U
Ker Kk— @

where U is a mat;ix, the columns of which are the eigenvectors of A. U may be
multiplied on the right by a suitable diagonal matrix D so that UD is ortho-
gonal. In theory one may obtain an orthogonal matrix as a limit of a product of
non-orthogonal matrices L(j)T, but in practice it may be better to obtain the
vectors by one of the methods of section 2.3,

We may speed up the iterations of equations (97) by eliminating the square

roots from the process as follows

(afe-1y2 | ole-D)
(eék-l))E _ (B(k 1)/d§k-1))2

(k-1)y2 _ _(k-1) (k-1),2 (99)
(dj ) = aj - (ej_ )
(e§k-l))2 - (B(k 1)/d§k-1))2
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agk) _ (dgk-l))Q . (eik-l))E
)2 - (al-D) eik-l))a
agk) _ (dgk-l))E . (egk-l))E
(B§k))2 _ <d§fil) egk-l))E
Oék) _ (dék-l))e

Here we ignore the signs of 5§k) and store only (ﬁik))e- The limit of A(k) will

be a diagonal matrix of eigenvalues of A and we may obtain the eigenvectors by
one of the methods of section 2.3.

Convergence may also be accelerated by a series of origin shifts. Instead
() A0E)

, we consider the modified sequence K(k) =

of the sequence A ukI where

the uk are chosen to be close to the smallest eigenvalue of A or the smallest:

diagonal element of A. More complicated choices of uy will insure cubic con-

vergence to diagonal form.

2.4.4 The Q-R Method
The Q-R method is based upoh the fact that any matrix A may be factored in
a non-iterative fashion into & product A = UT where U is orthogonal and T is

upper triangular. If A is symmetric and in tridiagonal form

A = (100)
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then T is upper triangular with non-zero elements only on the main diagonal
and the first two upper diagonals. If we form A' = ™TU, then A and A’ are
similar (A' = U?AU) and A' is also in tridiagonal form. We can assume as
before, without loss of generality that all aj # 0.

We will formulate the basic iteration as follows: ACK) _ (BT (k-1) (k)
(k) '

where V is an orthogonal matrix defined by

WO LW @ e e

Iet c(k)(J), sB)(3) b the quantities associated with the Jgkgii) . It will
2

be convenient to use the following notation:

A1) (k-1
AEDE) G0 e ()

A1) (n-1)  _ L (%)(0) | (102)
58 (3) _ peI-1) Jgkgﬁ)

p(®)(0-1)  _ ,00(0) _ (k)

The general forms of A(k-l)(J) and B(k)(j) are as follows
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/
aE) oK) ()

k
I

(103)
n) k) ()
dJ J J
N
(k-1) (k-1 -
0 4l °‘§+2) B;(ﬁll) 0
B(k)(j) -
TN
) o
(k) (x) (k)
Bj-1 % 5 (104)
o- {3(.k) v(k)
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¥

We will now define the quantities c(k)(j) and s(k)(j) and. the elements of A(k—l)(.i)
and B(k) (‘j).

S(1;)(1) _ 5§-k-1)/(( (k- 1) 2 (B(k-l) 2 1/2

oy’ +
(105)
c(1:)(1) _ O,](‘1:-1)/((013(_].{ 1) 2 . (B(k-l))2)1/2 .
From this it follows that
h](-k) _ ((a](-k-l))2 . (B(k-l)) )1/2
6Ss) _ :(Lk -1) aik 1), of -1)) /h(k)
NCERCICINCES (106)
1 =
g;g:) - ((B(k-l) 2 Oék—l) agk-l)) /hJ(-k)
o)LL ®() )
The remaining quantities are defined as follows:
e (G (s‘k'l) /2
(107)

A (G R N S O LA

Then it can be seen that
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n{®) ((gf.'k))2 v (fsgk'l))a)l/2 , 2<3<n-1

J
o) - pUED (D) (0 Gy 09 5 g oy
' ' (108)
&) - S0 () ) e < cn
gﬂ ) sgﬁl 2<j <n-2
gz(nk) _ hr(1k)
For the elements of B(k)(j) we have the following relations
a](.k) _ a](.k-l) N (Oék-l_) . a(k l))(B(k 1)) /(h(k) 2
p(6) (0D )
[ RO IS
9L @)
(109)
S ICUNORRNCIC NG 2 <3<l
; g6 _ () gzg 2<j<na
| SCEMNOCIOMOIRCIONS 2 <) cn
|
)
| §ﬂ - ®) ﬂ 25y <m0l
LE )
n n
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It can be shown from equations (105 and 106) that if A is positive

definite then

11m a(® o (diaéoml matrix), (110)
K o ’
and _
1m0 o 1me v (B g oy (111)
k—> o k—>

where U is an orthogonal matrix of column eigenvectors of A.

Equations (110 and lll) can be shown to hold true under the more general
requirement that A need only have eigenvalues with distinct absolute values.
Convergence can be accelerated by origin shifts, i.e. employing the modified

sequence of matrices K(k) = A(k)

- ukI where . is taken to be close to the
smallest eigenvalue (in absolute value) of A or the smallest, in absolute value,

diagonal element of A.

2.5 ©Step by Step Methods
In these methods, an eigenvalue € and a corresponding eigenvector X are
obtained, one pair € and X at a time. When an € and X have been obtained, the
matrix may be transformed by the method of deflation to a matrix of essentially
one lower order. We will describe two such methods: the power method and the

conjugate gradient method.

2.5, The Power Method
Iet A be a real symmetric nxn matrix with eigenvalues €; so ordered that
|€1]2|62|2....,2|en| and let U; be the corresponding eigenvectors of A. Iet

Xo be a vector which we may write in terms of Ui as follows;:

n .
el

X = ZJ v, U,. (112)
i=1
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We further define

X = K%, = M @y
Then

n .
X_K = Z Vi €i Ui .
i=1

We wish to study the behavior of Xk as k—> ». We consider three cases.
Case 1 (-.all eilgenvalues having distinct absolute values).

Here we have lel]>l€2|>""'>|€n

We now assume that vy # 0. Then X, can be written;

1B

€. k
X, = eli (lel +ié2 vy (e—;:') Ui) . (115)

In this case (ei/el)k approaches zero as k —>w for 1 £ 1, so X, /| ]Xkll

approaches the eigenvector Ul' When Ul has been computed to sufficient accuracy,

we may set € = U{ AUl, deflate the matrix A, and continue.
Case 2 (multiple eigenvalues, distinct eigenvalues having distinct absolute values).
Here it is sufficient to consider the case where e, = €y = sev €

1 P
- We nov assume that at least one v, #0 for 1 <i<p.

|€pl>| (—:P+l]>. e €

Now any linear combination of the eigenvectors Ul’ eeey U_will also be an
P

eigenvector of A corresponding to the eigenvalue el. We may write Xk as follows:

n
€. k
X, = ei (U + Z A (E;'T) Ui) (116)
i=p+l
where
\k N
™
U = ZJ viUi (117)
i=1

and U is an eigenvector of A corresponding to the eigenvalue ei. In this case

(ei/el)k approaches zero as k —» = for 1 > p, so X /| %, [| approaches the
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eigenvector U. When U has been computed to sufficient accuracy, we may
proceed as in Case 1.

Case 3 (unegual eigenvalues with equal absolute values).

Here it is sufficient to consider the case where € = -€y,

legl = legl > |e3[ > .o >| [e | . We assume that v, # 0and v, £ 0. Then

Xk can be written
n

€. k
k k i
X, = & (U + (D vl e Y v &) ) (118)
i=3
or
n
€, 22
24 i
Xy, = €F (vl 4 VU + ) vy & )
i=3
(119)
n
€, 2241
2241 i
Xopa = €& (0 - valp = z Vi (q) U;)
i=3

The first of equations (119), for example, may be used to determine ei by the
methods of cases 1 and 2. To determine the eigenvectors Ui and Ué, we take

two sequences

X

24 og * Sy fopa
(120)
Zog = Ty - S %55, -
Then
n 28-1
Y = ézz (2v,U v (€i + €,) (€i U.)
og = € "Vt f zz i'el 1 e i
i=3
(121)
f e e T (e (Y )
2g T & V22“Z‘iel'l e i
i=3

and as f —> Y2I/IIY21I} approaches U, and Zez/[lzgzll approaches U,. We
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may then deflate the matrix twice using € Ué and continue as

12 Upp - Sp
before.

In the course of the actual computation we may determine that we have
cases 1 or 2 by noting that the iterates X /||X, || converge smoothly toward a
limit vector U. Case 3 may be detected by noting that the successive iterates
Xk/||Xk|| and Xk+l/||Xk+l|| oscillate between two limiting vectors and the
special formulas of that case may be applied.

Convergence may be accelerated by means of origin shifts, i.e., employing
a modified sequence of vectors ik = (A - ukI) X, 1+ We may choose u_, for
example, to be near (1/2) (|€2| + Ien[) or near the average of the absolute

values of the two diagonal elements having the smallest absolute value and the

second largest absolute value.

2.5.2 The Conjugate Gradient Method

We know %hat the largest and smallest eigenvalues of a real symmetric
matrix A is given by the maximum and minimum respectively of the expression
(XIAX)/(Xﬁx) as a function of X where X is a vector. The conjugate gradient
method is a method for obtaining the maximum or minimum of that expression and
may be described as follows.

Tet Xo be an arbitrary vector such that ngo = 1. Then we define a
sequence of vectors Xk as follows. We assume that XE-l Xk-l = 1 and define

T
tk-l = Xk AX

iy
= B 1 Y Bear T Br m K Koy B (122)

w1
&
3
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T . .
We note that |IZk|l < 2||A|| and X, 1 % =0 for all k. We will show that if
either Zk = 0 or g = O then Xk-l is an eigenvector of A. If Zk = 0, then
X, _; is an eigenvector of A by the second of equations (122). 1If g, = O then

we have
0 T T

& = L KXy 4 < (}ST:-l A X By Xllf-l) Xy
X‘lﬂ{?-l AT -% X"E-l) Ay

T T
Ry AT =% ) X NI -% XE-l) Ky 1

(123)

™~ X T ) - T r XT |
(T -X g X)) B | [T -% 1% 1) B,
since I - Xk-l Xg-l is a projection onto the subspace of all vectors orthogonal

to X, Bquation (123) implies

L
(T =%y % p) MKy, = 0 (124)

which can only happen if Xk-l is an eigenvector of A. Thus we may only consider

the case where %, # 0 and g, # 0. We define

T = /17|

T

b = og/llnll = oA
Y%

i
= Y AY, (125)

gﬁl

o1 v 9% Y
. T /1E ]

where o remains to be chosen. We note that'fk% O for all choices of Q- We

<
]

now form tk
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T

e - X A = (& AR/ %)

+
il

ty g * 2y 0 ¥ w0

1 + e -
% (126)
o .

- % 2y o+ (- o
k-1 2
1+,
i

1
= t_ + ( / + ( "t_ ))
k-1 1. (l/ak)ﬁ Py /% Ye T Ykel
Iet Sk be any sequence of numbers and set

P

G = ey Tt B (127)

Then equation (126) beccmes

w2 s
5 O 5 (128)
My 4 (b g - u + )

If the Bk are now subjected to the following restrictions: (1) 6k >0,
(2) ]5k] is bounded away from zero, (3) lﬁk] is bounded away from «, then the
tk form a monotonically increasing sequence bounded from above. Hence the tk
must converge to a limit, namely the maximum of (XTAX)/XTk), and t, -t 4
must approach zero as k —> « . But by the conditions imposed on the 6k and.
equation (128) h, and hence g must approach zero as k ——» ». Hence the X,
approach an eigenvector of A and the tk approach a corresponding eigehvalue.
Once the eigenvalue and eigenvector pair have been computed to sufficient accuracy,
the process of deflation may be used on A and the procedure may be continued.

We also obtain converéence if one, fwo, or all of the conditions (1) - (3)
are replaced by the corresponding conditions (1)* 8 <0, (2)r |6k| —> 0 no

faster than hi, (3> ll/skl —> 0 no faster than hE. Condition (1)' will lead
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to the computation of the minimum of (XEhX)/X$X). The choices of Bk which

maximize [t - tk-ll are given by

o
il

E—-
x = \[(tk-l - w)T o+ by (129)

or

I CER
R A T e (130)

3. Conclusions

Of the three classes of methods described in this report, the step-by-step
methods appear to be the poorest for the following two reasons: (1) they are
generally slow in convergence, relative to the other methods, even with judicious
choices of origin shifts; (2) there is a cumulative loss of accuracy as one
proceeds by deflation to calculate the eigenvalues and eigenvectors occurring
later in the computation.

The orthogonal. reduction methods (with the exception of the L - LT method)
have the advantage that the eigenvectors are built up as a product of elemen-
tary orthogonal matrices, a process which is numerically stable and guarantees a
set of eigenvector approximations which is reasonably orthogonal. In the L - LT
method we obtain the orthogonal eigenvector matrix as a product of elementary
non-orthogonal matrices, a procedure which is not recommended from the point of
view of numerical stability or accuracy. However, the orthogonal reduction
methods (with the exception of the I - LT method) are slow as compared with the
Sturm sequence method and the square root free modification of the T ~ LrII method,
although they are faster than the step-by-step methods.

The fastest methods for obtaining the eigenvalues of a real symmetric matrix
are the Sturm sequence method, applicable to general real symmetric matrices and

the square root free modification of the L - LY method, applicable to positive
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definite real symmetric matrices. Of the two methods, the latter is faster
when applicable. Of course, a real symmetric matrix can always be made positive
definite by a suitable origin shift, but this can result in a loss of accuracy,
particularly if the required origin shift is large.

Hence, for the calculation of the eigenvalues of real symmetric matrices
the Sturm sequence method is recommended in the general case and the square root
free modification of the L - LT method is recommended in the positive definite
case. Once the eigenvalues have been obtained, the method of inverse iterations
appears to be an effective and stable method for obtaining the eigenvectors.

The reduction to tridiagonal form, prior to the application of the Sturm sequence
or square root free modification of the L - LT method, may be most quickly and

stably carried out by the Householder method.
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